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PRODUCTS OF SOME GENERALIZED FUNCTIONS 

By Robert C. Costen 
Langley Research Center 

SUMMARY 

The purpose of this report is to define a new class of generalized functions which 
includes products of all members of the class.  Application is made to the families of 
generalized functions derived from tanh nx 
ne-n2X2 (Gaussian family), where n is a sequence index and x the independent vari- 
able. Elementary uses of the product analysis in physics a r e  also presented. 

(hyperbolic tangent family) and from 

The hyperbolic tangent family of generalized functions has the following features: 
The Dirac delta functions and its derivatives a r e  polynomials in the Heaviside 
unit step function Hn(x) multiplied by powers of the sequence index n. Conversely, 
powers of Hn(x) may be expressed as linear sums of Hn(x), 
coefficients containing powers of n. Products of these generalized functions a r e  simi- 
larly expressed either as polynomials in Hn(x) o r  as linear sums of Hn(x), 6,(x), 
6h(x), . . . . The Gaussian family of generalized functions has analogous features, but 
products a r e  not the same in the two families. 

6,(x) 

6,(x), 6i(x), . . . with 

INTRODUCTION 

The mathematics of generalized functions, although highly developed, does not 
usually treat  null generalized functions nor products of generalized functions. 
exception is the work of Schmieden and Laugwitz (ref. 1) which enlarges the concept of 
real  numbers to include infinitesimally small and infinitely large numbers.) The pur- 
pose of this report is to develop a formalism which t reats  products of certain general- 
ized functions and to show that such products (and also null generalized functions) a r e  
potentially useful in mathematical physics. 
examples at the end. 

(An 

The latter objective shall be deferred to the 

It is possible to include products in the theory of generalized functions by extending 
the definition of regular sequences presented by Lighthill (ref. 2) while simultaneously 
imposing certain restrictions. This is done in a subsequent section, and the extension 
is a natural one for some useful generalized function sequences. 

A detailed product analysis is carried out for the family of generalized functions 
derived from the hyperbolic tangent representation for the Heaviside step function 



Hn(x) = + t:nh nx, where n is the sequence index. An alternative hyperbolic tangent 
formulation in  te rms  of the signum function SgnnX = tanh nx is presented in appendix A. 
In appendix B a brief product analysis of generalized functions derived from the Gaussian 

representation for the Dirac delta function Gn(x) = is presented, and features 

of the Gaussian and hyperbolic tangent families a r e  compared. Other useful sequences 
for the delta function, which a r e  not treated in this report, include 6, = - Si:x~ (ref. 3) 

ne- n2x2 

fi 

(ref. 4). n 
r(n2x2 + I) 

and 6,(x) = 

SYMBOLS AND NOTATIONS 

A, B, C , a, b constants 

aw7by v coefficients appearing in equations (8) and (10) and given by tables I and I1 

c (4 integration constant 

C speed of light in vacuum, meters  per  second 

D electric excitation, coulombs per  meter 

E electric field strength, volts per meter 

2 E electrostatic energy, joules per  meter 

F (x) a good function, one which is everywhere differentiable any number of times 
and such that it and all its derivatives a r e  00 
all N 

as 1x1 - a for 

hyperbolic tangent sequence for the Heaviside unit step function with 
1 
2 

Hn (x) 
sequence index n, -(1 + tanh nx) 

HJx) Hermite polynomials of degree a! and argument x 
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sequence index for  generalized functions 

order g(n) as n - “0; y = O(g(n)) implies that there exists an integer M 
for which lyl <Mlg(n)l as n -c 

Legendre polynomial of argument u and index m 

coefficients appearing in  equations (28) and (31) and given by tables I11 
and IV 

time, seconds 

electromagnetic energy density, joules per  meter 3 

A?) (+I, A?) (-1 definite generalized function pairs  of related symmetry such that 
A(a)(+) n - A?)(-) = Sp) for indefinite generalized functions 6p) 
(eqs. (5) and fig. 3) 

sequence for the Dirac delta function; hyperbolic tangent sequence (eqs. (3a) 
and (26)) is employed throughout this presentation, except in appendix B 
where the Gaussian sequence (eq. (36)) is used 

Kronecker delta, 6 = 1 when a =  p and 6 = 0 when a #  p 
6cq3 orp Olp 

E (4 dielectric function (eq. (22)), farads per  meter 

EO dielectric constant of vacuum, farads per meter 

electric charge density, coulombs per  meter 3 P 

7 parameter of o(n-1) as n - 00, meters  

Po 7 1 linear electric scaler  potential functions appearing in  sketch 1, volts 
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hyperbolic tangent sequence for  the signum function with sequence index n, S h X  
tanh nx 

f"(x) = d2Jdx2 

f(a)(x) = 

primes and parenthetical superscripts denote derivatives 

f'(x) = df /dx 

I I  absolute value 

Vector notation is not used, since electromagnetic fields have only one component 
in the examples presented. 

EXTENDED CLASS OF GENERALIZED FUNCTIONS 

In this section a useful c lass  of generalized functions is defined which includes 
products of all members of the class.  The presentation is similar to that given by 
Lighthill (ref. 2) but is not nearly as complete. Generalizations and departures from 
the previous theory a r e  pointed out. Many of the properties of this c lass  of generalized 
functions - including their Fourier transforms - are not considered. 
formalism given is adequate for the product analysis contained in the res t  of this paper. 

of t imes and such that it and all its derivatives a r e  O ( ~ X / - ~ )  as 1x1 - 03 for all N 
(ref. 2, p. 15). 

Definition 2: A fairly good function is one which is everywhere differentiable any 
number of t imes and such that it and all its derivatives a r e  O(lxlN) as 1x1 - 03 fo r  
some N (ref. 2, p. 15). 

Theorem 1: The derivative of a good function is a good function. The sum of two 
good functions is a good function. The product of two good functions is a good function. 
The product of a fairly good function and a good function is a good function. (Proof 
omitted.) 

However, the 

Definition 1: A g o d  function is one which is everywhere differentiable any number 

Definition 3: A sequence fn(X) of good functions is called a k regular sequence 
co 

if  for any good function F(x) there exist integers 1 such that lim n-' 

exists, and i f  k is the least  value of 1 for which this limit exists. If there is no least 
value of 1, fn(x) is termed a null sequence. 

fn(x) F(x)dx n--a, s, 
Regular sequences as defined by Lighthill (ref. 2) correspond to k 5 0 regular 

sequences in  definition 3. Products of generalized functions (defined subsequently) are 
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frequently positive k regular sequences. Negative k regular sequences correspond 
to null generalized functions in  previous treatments. (See ref. 5, pp. 24-29.) It is 
necessary to retain negative k regular sequences in  the present treatment because the 
product of two negative k regular sequences may be a k = 0 regular sequence o r  a 
positive k regular sequence. Fo r  such examples see  section entitled "Elementary 
Applications." 

The notion of equivalent sequences, as presented by Lighthill (ref. 2, p. 17), is 
necessarily omitted in  the present treatment. This is because two sequences fn(x) and 
gn(x), which satisfy the equivalence relation 

00 

lim 1 n-a, -00 
- gn(x)) ~ ( x )  d~ = o 

for any good function F(x), will i n  general differ by a negative k regular sequence. 
Since negative k regular sequences a r e  elevated to  equal status with k = 0 and posi- 
tive k regular sequences in the present treatment, the concept of equivalent sequences 
cannot be retained. For further discussion of this point s ee  appendix B. 

Theorem 2: If fn(x) is a k regular sequence of good functions, its derivative 
fh(x) is a k regular sequence of good functions. 

Proof: By theorem 1 fh(x) is a sequence of good functions. Also for any good 
function F(x) 

00 

lim n-k 1 f '  (x) F(x) dx = lim -n-k fn(x) F'(x) dx 
n+- -00 n n+m 

and the limit on the right-hand side exists by definition 3 and theorem 1. Hence, by 
definition 3, fh(x) is a k regular sequence of good functions. 

Definition 3 substantially enlarges the class of sequences considered regular. But 
the product of any two regular sequences thus defined is not necessarily a regular 
sequence. For  example, the sequence 2 e-x2e2n is one of the representations of the 

delta function and is a k = 0 regular sequence. But its square - en (E is 

not regular, for the term in parentheses (which is another representation for the delta 
function) is multiplied by en. (In this case the index substitution m = en renders the 
square a k = 1 regular sequence in  the new index m.) A sufficient condition that the 
product of two regular sequences of good functions be a regular sequence of good func- 
tions is that the two sequences are of integral order, in the sense of the following 
definition: 

6 
G 
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Definition 4: A sequence of good functions is said to be of order r if r is the 
least integral value of p for which there exists an integer M such that n-p f (x) < M 
for any n 5 1 and all x. 

I n  I 
Theorem 3: A sequence fn(x) of good functions of order  r is a k regular 

sequence with k 5 r. 

Proof: By definition 4 there exists an integer M such that n-'lfn(x)l < M for 
any n 2 1 and all x. Hence, for any good function F(x) 

Since the right-hand side of the inequality is finite by definition 1, the limit exists. 
Therefore, by definition 3, fn(X) is a k regular sequence with k at most equal to r. 

On the other hand, a regular sequence of good functions (definition 3) is not neces- 
sarily of integral order (definition 4). 
- en e-X2e2n is a k = 0 regular sequence, but it is not of integral order. (In this case 
G 
the substitution m = en renders the sequence of order  1 in the new index m.) Thus, 
sequences of good functions of integral order a r e  seen to be a subclass of all regular 
sequences of good functions. 

For example, the delta function sequence 

Themem 4: If sequences of good functions fn(x) and gn(x) a r e  of orders  r 
and s, respectively, with s 2 r, their sum fn(x) + gn(x) is a sequence of good func- 
tions of order at most s. (Proof omitted.) 

Theorem 5: If sequences of good functions fn(x) and gn(x) a r e  of orders  r 
and s, respectively, their product fn(x) gn(x) is a sequence of good functions of order 
at most r + s. 

Proof: By definition 4 there exist integers M and N such that 

n-q fn(x) I < M 

n-s[gn(x)l < N 

for any n 2 1 and all x. Hence 

n-r-sl fn(x) gn(x) 1 < MN 

for  any n 2 1 and all x. Therefore, by theorem 1 and definition 4 fn(x) gn(x) is a 
sequence of good functions of order at most r + s. 

Some sequences of integral order have derivatives which a r e  not sequences of 
integral order (although they a r e  regular sequences by theorem 2). For example, the 
sequence e-x2e2n of order 0 has for its first derivative -2e2nxe-x2e2n, which is 
not a sequence of integral order. (Again the index substitution m = en makes the 
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derivative sequence of order 1 in the new index m.) To eliminate such sequences from 
consideration, "proper" sequences a r e  defined as a subclass of all sequences of integral 
order, as follows: 

Definition 5: A sequence fn(x) of good functions is termed a proper sequence of 
good functions if  the sequence itself and all of its derivatives are sequences of good func- 
tions of integral order. 

Definition 6: A generalized function is defined as a proper sequence fn(x) of 
good functions. 

Definition 7: (1) The derivative of a generalized function fn(x) is defined by the 
sequence fi(x). (2) The sum of two generalized functions fn(x) and gn(X) is defined 
by the sequence fn(x) + gn(x). (3) The product of two generalized functions fn(x) and 
gn(x) is defined by the sequence fn(x) gn(x). (4) The product of a fairly good function 
q(x) and a generalized function fn(x) is defined by the sequence q(x) fn(x). (5) The 
linear substitution x = ay + b in the generalized function fn(x) is defined by the 
sequence fn(ay + b). 

Proof of consistencv for definition 7: In each case i t  must be shown that the 
sequence defined is a proper sequence of good functions. (1) By definition 5 for  fn(x) 
the sequence fh(x) and all its derivatives a r e  sequences of good functions of integral 
order.  Hence fA(x) is a proper sequence of good functions. (2) The individual 

a! = 0, 1, 2, . . ., a r e  sequences of good functions of integral order by definition 5. 
Also the derivatives of fn(x) + gn(x) are given by 

sequences and their derivatives, represented by fp)(x) and gn (4 (x) with 

Hence by theorem 4 and definition 5 the sequence fn(x) + gn(x) is a proper sequence of 
~~ 

da! good functions. (3) By theorem 1, -(fn(x) gn(x)) with a!= 0, 1, 2, . . ., a r e  sequences 
dxa! 

of good functions. Also --,(fn(x) da! gn(x)) = f n  (4 (x) gn(x) + a!fiel)(x) gA1)(x) + . . . . 
dx __- 

dQ! Hence, by theorems 5 and 4, --(f (x) gn(x)) with a! = 0, 1, 2, . . . a r e  sequences of 

goodfunctions of integral order. By definition 5, therefore, fn(x) gn(x) is a proper 
sequence of good functions. (4) and (5) Proofs omitted. 

dxa! 

FAMILY OF GENERALIZED FUNCTIONS DERIVED'FROM tanh nx 

Consider the hyperbolic tangent representation of the Heaviside unit step function 



where n is the sequence index. Plots of this representation for Hn(x) (and also of 
the corresponding signum function representation sgnnx = tanh nx) against x a r e  shown 
in figure 1 for various values of n. This particular choice for  %(x) results in the 
recurrence relation 

A- dx H,(X) = 2n[Hn(x) - ~&ij (2) 

d Therefore the delta function 6,(x) = - Hn(x) belonging to this family of generalized dx 
functions may be represented by 

Further differentiation and reapplication of equation (2) yields the following equations: 

- 7Hn 2 + 12.: - 6H$ 

Hn - 15Hn 2 + 50Hn 3 - 60H, 4 + 2 4 H 3  

Hence sequences for the delta function and its derivatives in this family a r e  polynomials 
in Hn(x) multiplied by powers of the sequence index n. Graphs of a number of these 
generalized functions against Hn(x) (eq. (1)) and sgnnx = tanh nx are shown in 
figure 2. A feature of.these figures is that they apply for all values of n. 

Set (3) may be inverted to obtain 

Thus, powers of Hn(x) a r e  expressed as linear sums of Hn(x) and its derivatives, 
with coefficients containing powers of the sequence index n. 

The generalized functions of set  (3) a r e  characterized by order (definition 4) and 
by degree of the polynomial in Hn. Thus 6i(x) (eq. (3c)) is of order 3 and degree 4; 
and 6$)(x) is of order p + 1 and degree p + 2. 
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All of the generalized functions of set  (3) are k = 0 regular sequences (defini- 
tion 3). But within the bounds of definition 6, one may combine arbitrary powers of n 
with arbitrary polynomials in Hn(x) to obtain generalized functions of any desired 
order and shape. (Of course, such sequences will be good functions of x (definition 1) 
only if the polynomials in Hn(x) vanish at Hn(x) = 0 and at Hn(x) = 1.) The gen- 
eralized functions thus formed may alternatively be expressed in te rms  of the functions 
Hn, bn, Si, . . ., multiplied by appropriate powers of n, by substituting set (4). In 
fact, any generalized function Gn(Hn(x)) which is composed of continuous functions of 
Hn(X) may be expressed by a ser ies  of polynomials in Hn through Legendre expansion 
and also as a ser ies  in Hn, 6,, si, . . . through substitution of set (4). A related 
theorem for a different c lass  of generalized functions is cited by Gel'fand and Shilov 
(ref. 6). (To carry out the Legendre expansion of Gn(Hn(X)), first substitute 

a ser ies  of Legendre polynomials in  the signum function P,(sgnnx) 
expansion. (See Sneddon, ref. 7, pp. 46-60.)) An alternative form of se t s  (3) and (4) in 
te rms  of sgnnx (in place of Hn(x)) is presented in sets  (26) and (27) of appendix A .  

1 + sgnnx 
2 

, where sgnnx = tanh nx. Since the range of sgnnx is -1 9 sgnnx 9 1, Hn(x) = ' 

is suitable for  the 

'I INDEFINITE GENERALIZED FUNCTIONS 6;' 6n, . . . EXPRESSED AS 

DIFFERENCES OF DEFINITE GENERALIZED FUNCTIONS 

Each of the indefinite generalized functions of set  (3) may be represented by the 
difference of two definite generalized functions of related symmetry, as follows: 

Plots of these pairs  of definite generalized functions against Hn(x) and sgnnx are 
shown in figure 3. The notation At)(*) of definite generalized functions is intended 
only to correlate them with the indefinite generalized function 6:) from which they 
a r e  derived. Obviously - An(*) # Ai(*). 

(definition 6), but the generalized functions on the left-hand side of set  (5) are all 

d f  
dx 

Correlated definite and indefinite generalized functions in set  (5) a r e  of like order  

9 



k = 0 regular sequences (definition 3) while the t e rms  in parentheses on the right are 
all positive k regular sequences. 

PRODUCTS OF GENERALJZED FUNCTIONS DERIVED FROM tanh nx 

The product of two generalized functions is given in  definition 7. For the hyper- 
bolic tangent family of generalized functions (set (3)) it is clear  that all products will be 
polynomials in Hn(x) multiplied by powers of the sequence index n. For example 

But substitutions from set (4) give alternatively 

Therefore any product of the generalized functions of set (3) may also be represented by 
a linear sum of these generalized functions with appropriate powers of n in the coef- 
ficients. A number of such products a r e  

4n 3 6, 6n (4) 

n66 6;; 6n (3) 
60n 

H 6  
2 2 8n n n  

15 280n 

Here the product of two generalized functions, having individual orders r and s 
(definition 6), is seen to have order r + s, in agreement with theorem 5. 

10 



It should be emphasized that equations (3) to (7) hold only for  the particular family 
of generalized functions derived from the hyperbolic tangent representation (1). Analo- 
gous, but different, relations apply to the family of generalized functions derived from 
the Gaussian representation (36). These a r e  presented for  comparison in  appendix B. 

EXTENSION OF RELATIONS 

Equations (3) may be written 

where the coefficients a are given in table I. orp 

TABLE 1.- COEFFICIENTS acrp 

C Y 0  

1 :  

6- 
1 2 3 4 5 6 

) (8) ( p = 1 , 2 , 3 ,  . . . 
a!= 0, 1, 2, . . 

1 

1 -1 

1 -3 2 

1 -7 12 -6 

1 -15 50 - 60 

1 - 3 1  180 - 390 

1 -63 602 -2100 

24 

360 - 120 

3360 -2520 

The formula 

aorp = 6aa!-1,p - (P - 1)aa!-1,p-1 

continues table I indefinitely. Similarly, equations (4) a r e  given by 

7 

720 

(9) 

= 1, 2, 3, . . 
= 0, 1, 2, . . . 

n 

v=o 

where the coefficients bpv are given in table 11. 
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TABLE II.- COEFFICIENTS bpu 

r" 
3 

U- 

0 1 2 3 4 5 6 

1 

1 -1 

1 - 3/2 

1 -11/6 

1 -25/12 

1 -137/60 

1 -49/20 

1/2 
1 - 1/6 

35/24 -5/12 1/24 

15/8 -17/24 1/8 - 1/120 
203/90 -49/48 35/144 -7/240 1/720 

Table I1 may also be extended indefinitely by the formula 

bp- 1, u- 1 
bpu = b p - l , u  p - 1 

The coefficients a and bpu  satisfy the relations I-lv 

where 6a8 is the Kronecker delta. 

Products of generalized functions expressed as polynomials in Hn(x) (eq. (6)) a r e  
given by 

Products expressed as linear sums of generalized functions (eqs. (7)) a r e  given by 

12 
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DISCUSSION 

The product equations (7) are useful conceptually in that products a r e  given in 
te rms  of more familiar functions - the step function and its derivatives. These rela- 
tions a r e  also useful mathematically because (a) indefinite integrals of these products 
a r e  easily obtained for all values of n and (b) definite integrals of these products, 
multiplied by any analytic good function, a r e  obtained to highest and next highest orders  
of n in the limit as n -. m. 

Example 1: Determine the indefinite integral 6,(x)6;(x) dx. 

Integrating equation (7g) gives 
s 

a result which is valid for all values of n, where C(n) is an integration constant. 

Example 2: Find the asymptotic behavior for large n of the definite integral 
00 r 

neighborhood of x = 0. 

Hn(x) 6h(x) F(x) dx, where F(x) is any good function which is also analytic in the 
- -00  

By equation (7c) 

00 6' (x) nsn(x) 6:(x) 
6h(x) F(x) dx = 1 -00 (e 2 - - 3 - -) 6n dx 

The generalized functions 6,(x), 6;(x), and 6i(x) (eqs. (3)) decay as e -2nlx I 

for  1x1 > Mn-1, where M is some integer. Therefore it is easily shown, by using the 
Maclaurin expansion of F(x), that as n - 00 

6h(x) F(x) dx - -F'(O) + 0 

00 

n6,(x) F(x) dx - nF(0) + O ( T )  

13 
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Hence 

Hn(x) 6h(x) F(x) dx - - 7 nF(0) - - F'(0) + 
2 

as n - w. If F(0) = 0 the limit of the integral exists as n - w, and if F'(0) = 0 also 
the limit of the integral vanishes. 
Hn(x) 6h(x) is a k = 1 regular sequence (definition 3). 

Equation (18) indicates that the generalized function 

ELEMENTARY APPLICATIONS 

The foregoing analysis is convenient for  treating physical systems whose fields 
are approximated by the sequence functions of appropriate generalized functions. The 
finite amplitude and narrowness of all physical systems correspond to finite (although 
possibly large) values of the sequence index n. Energy density and other product 
quantities a r e  readily found. Certain physical fields correspond naturally to negative 
k regular sequences (previously regarded as null generalized functions (ref. 5, 
pp. 24-29)). The equal status of negative k regular sequences with k = 0 regular 
sequences in product calculations is illustrated in the following two elementary examples. 

Electromagnetic Wave Pulses 

The product analysis allows a simple comparison of the energies of plane electro- 
magnetic wave pulses in  vacuum having different shapes but the same order of amplitude 
and narrowness. Let the electric fields of three pulses be given, for example, by 

1 El(x,t) = A6n(x - Ct) 

SI;(. - ct) J E3(x,t) = - 
n2 

where A, B, and C are constants and c is the speed of light in  vacuum. The gen- 
eralized functions 6n, 6h/n, and 6i/n2 a r e  k = 0, k = -1, and k = -2 regular 
sequences, respectively (definition 3); but they are all of order 1 (definition 4). 

The energy density of a plane electromagnetic wave in  vacuum (including the 
2 magnetic part) is given by W = eOE . For the three pulses of set (19), then, the energy 

densities are,  by equations (7) 

14 



2 2  W,(x,t) = eOA 6n(x - ct) = 6,(x - ct) - - 12n 

E 2 
W 2( x,t = - (sh(x - ct)) = eoB2 6,(x - ct) - - 

2 n 

1 
S;(x - ct) - - 2 

n4 15n 

Integration of expressions (20) shows that the pulses have equal energy when 

A2 = 

pulses of small amplitude and large width (small n) as well as to tall and narrow pulses 
(large n). 

B2 = 16 C2, These results hold for all values of n; consequently, they apply to 7 

Thin Dielectric Filled Capacitor With External Fields Applied 

Sketch 1 

Let the electrostatic system of sketch 1 (within the outer plates) be idealized by 
the following representations for the electric scaler potential 

CP(X) = qo(x) + Hnb) q 1 ( ~ )  (21) 

and for  the dielectric medium 

E(X) = e o  [ 1 + A -  ".d"l 
15 



where qo and q1 are linear functions of x, and where E (x) has a peak value of 

e o  (1 + t) inside the thin capacitor and equals e o  outside. The generalized function 

6n(x)/n in the definition of the dielectric is a k = -1 
order 0 (definition 4). 

regular sequence (definition 3) of 

The electric field E(x) = 9 electric excitation D(x) = E(X) E(x), and charge dx' 

density p(x) = - dD are found to be 
dx 

where terms of like order have been grouped together. 

Features of this approach using generalized functions a re  (a) expressions (23) 
apply to the entire region between the outer plates, (b) these expressions exhibit the 
detailed structure of the fields in the neighborhood of the origin, and (c) Maxwell's equa- 
tions in differential form suffice without the jump (discontinuity) conditions. 
detail could be obtained with ordinary functions only by using jump conditions at the 

Comparable 

plates of the thin capacitor to piece together solutions for the three separate regions 
included between the outer plates. 

The expressions for energy density and for electric force density 
2 

(ref. 8) are also readily obtained. The energy within the thin 
2 

P(X) E(x) - 
7 

capacitor (per unit area) E= L 1 E(x) D(x) dx, where 7 = O(n-l) in the limit as 

n -c 00, is given to highest and next highest orders  of n by 
2 -7  

16 



To highest order in n, therefore, the capacitance of the thin capacitor (per unit area) is 

5 (1 + 9) + O(1). The thin dielectric layer, represented by the negative k regular 

sequence (22), is seen to affect the highest order term in the capacitance formula. 
3 

Langley Research Cemter, 
National Aeronautics and Space Administration, 

Langley Station, Hampton, Va., May 16, 1967, 
129 -02 -0 1-0 1-23. 
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APPENDIX A 

ALTERNATIVE FORMULATION OF HYPERBOLIC TANGENT FAMILY OF 

GENERALIZED FUNCTIONS IN TERMS OF SWnX 

The substitution 

where sgnnx = tanh nx in accord with equation (l), reveals symmetries in the general- 
ized functions derived from tanh nx. Equations (3) become 

6,(x) = E 2 (I - sgnix) 

5!J 6, (3) (x) = 4n4(2 sgnnx - 5 sgnnx 3 + 3 sgnnx 

The inverse of set  (26) is 
\ 

2 2% sgnnx = 1 - - n 

3 sh sgnnx = sg%x + - 2 n 
4 86, 6; 

s g n 3  = 1 - - - - 
3n 3n3 

sgnnx 5 = sgnnx + 

Equations (26) may be written 

18 



APPENDIX A 

where the special definitions 

sgn(p)x = sgnnx 0 = 1 
no0 

are employed and where the coefficients r a p  are presented in table III. 

TABLE 1II.- COEFFICIENTS r 

a! 00 

l o  1 

2 

3 

4 

5 

6 

6- 
0 1 2 3 4 5 6 7 

1 

1 

1 -1 

-2  2 

- 2  8 -6 

16 -40 24 

16 -136 240 

-272 1232 - 1680 

,120 

720 

Table 111 may be extended indefinitely by means of the formula 

r a p  = (P  + lba- l ,p+ l  - (6 - 1baL1,p-1 (a ' 0) (30) 

Equations (27) may be written 

s g n t ) x  
sgn:x= 7' sp,, 

nv v=oo 

where the coefficients s are given in table IV. 
P V  

19 
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TABLE 1V.- COEFFICIENTS 

V- 

00 
~~ 

1 

1 

1 

1 

is applicable to table IV for 
relations 

1 

-1 

-4/3 

-23/15 

2 3 

1/2 

- 1/6 

sI.lv 

4 5 

5/6 1/24 

- 1/3 - 1/120 

49/4 5 7/72 

6 
. .  

1/720 

sp- 1, v- 1 ( V > O )  (3 2) P 2 , V  ( p  - 1) spv = s 

v > 0. The coefficients rpv and spv satisfy the 

1' raysyP= saqrqp = 6ap 
Y=o q=oo 

Product formulas in te rms  of sgnnx a re  

and 

(33) 

20 
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which correspond to equations (13) and (14), respectively. A number of products a r e  

2 2 Products such as 6n, 6,6;, (6;) , which do not contain sgnnx as a factor, a r e  the 
same as in set  (7). 
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2 2  
FAMILY OF GENERALIZED FUNCTIONS DERIVED FROM ne-" 

The Gaussian representation for the delta function is 

The derivatives of this generalized function a r e  given by 

where H,(nx) a r e  Hermite polynomials of argument nx. (See ref. 7, pp. 132-134.) 
When written out for comparison with sets  (3) and (26), equation (37) becomes 

6; = (-2nx)n6, 

6; = (-2 + 4n 2 x 2) n 2 6, 

6 F )  = (12nx - 8n 3 x 3) n 3 6, 

6(4) n = (12 - 48n2x2 + 16n4x4)n46d 

The inverse of set  (38) is, for  comparison with se t s  (4) and (27) 

Products of the generalized functions of set  (38) a r e  polynomials in nx multiplied 
2 by bn(x) and powers of n. But 

2 n = - 6 (x) fi \/zn 

22 
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by equation (36), and set (39) may be substituted to express the products alternatively as 
linear sums of the delta function of modified index 6 (x), and its derivatives, with 

E n  
coefficients containing powers of n, as illustrated: 

A comparison of the Gaussian and hyperbolic tangent families of generalized func- 
tions shows the following: 

(1) Definite integrals of similar product quantities in the Gaussian family (set (40)) 
and in the hyperbolic tangent family (set (7)) agree only in powers of n. For example, 

(Gaussian equation (40a)) 

-co (hyperbolic tangent equation 

This stems from the fact that 

is a k = -2 regular sequence of order 1, and it exemplifies the remarks following 
definition 3. The subscripts G and ht in equation (41) denote Gaussian and hyper- 
bolic tangent, respectively. 

(2) Products involving the unit step function Hn(x) a r e  tractable in the hyperbolic 
tangent family but not in the Gaussian family. (Compare sets  (7) and (40).) 

(3) Product terms have precisely the same form as linear terms in the hyperbolic 
tangent family (eqs. (7)), and this permits direct comparison of linear te rms  with non- 
linear terms. But in the Gaussian family multiplication changes the sequence index 
as in equations (40). 

23 
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00 

(4) Definite and indefinite integrals of the form J-, ~ ( x )  gn(x) dx or 

1 F(x) gn(x) dx, where F(x) is an analytic good function and gn(x) is a generalized 
function of the Gaussian family, may be determined to any desired degree of accuracy 
for finite n. (This is accomplished by substituting for g,(x) from set  (38), expanding 
F(x) in a Maclaurin series,  multiplying terms, and substituting eqs. (39).) The hyper- 
bolic tangent family of generalized functions allows definite integrals of this type to be 
determined only to the highest and next highest orders  of n in the limit as n - co, as 
illustrated by equation (18). 

24 
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Figure 1.- Hyperbolic tangent step funct ion representations. 
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Figure 2.- Graphs of hyperbolic tangent generalized functions ~ plotted against Hn(x) and sgnnx for y = 0 to 4. 
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Figure 2.- Continued. 
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Figure 2.- Continued. 
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Figure 3.- Graphs of definite generalized function pairs __ and - plotted against Hn(x) and sgnnx for y = 1 to 4; 

(2n)Y+l  (2n)Y+l  

where 6;) = A;)(+) = An (Y)  (4. 
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Figure 3.- Concluded. 
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